DEPARTMENT OF ENVIRONMENTAL PROTECTION

Commonwealth of Pennsylvania
State Board for Certification of Water and Wastewater Systems Operators
3/2016

Formulas, Conversions, and Common Scientific Units

Formulas,

Conversions
\& Abbreviations

Units of Weight, Volume, Time, Density, Concentration \& Flow

Formulas \& Conversions

Formulas

AREA

Area of Rectangle $=($ Length $) \times($ Width $)$
Area of Triangle $=1 / 2 \times$ (Base) \times (Height)
Area of Circle $=(0.785) \times\left(\right.$ Diameter $\left.^{2}\right)$ or (3.14) $\times\left(\right.$ Radius $\left.^{2}\right)$
Area of Cylinder Surface $=\left[(0.785) \times\left(\right.\right.$ Diameter $\left.\left.^{2}\right)\right]+[(3.14) \times($ Diameter $) \times($ Height $)]$
Circumference of Circle $=(3.14) \times$ (Diameter) or (2) \times (3.14) \times (Radius)
Curved Surface Area of a Cylinder $=(2) \times(3.14) \times$ (Radius) \times (Height)
End Surface Areas of a Cylinder (both ends) = (2) x (3.14) x $\left(\right.$ Radius $\left.^{2}\right)$

VOLUME

Volume of Rectangular Tank $\left(\mathrm{ft}^{3}\right)=($ Length $) \mathrm{x}($ Width $) \times($ Height $)$
Volume of Cone $\left(\mathrm{ft}^{3}\right)=(.333) \times(0.785) \times\left(\right.$ Diameter $\left.^{2}\right) \times($ Height $)$
Volume of Cylinder $\left(\mathrm{ft}^{3}\right)=(0.785) \times\left(\right.$ Diameter $\left.{ }^{2}\right) \mathrm{x}($ Height $)$ or (3.14) $\times\left(\right.$ Radius $\left.^{2}\right) \times($ Height $)$
Volume of a Treatment Vessel, gal $=$ Volume $\left(\mathrm{ft}^{3}\right) \times\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right)$

WATER FORMULAS

Alkalinity $=(\mathrm{mL}$ of Titrant) (Acid Normality) $(50,000)$ mL of Sample

Chlorine Demand (mg/L) = Chlorine dose - chlorine residual
$\mathrm{CT}=$ Concentration of disinfectant residual X contact time (mins)
Detention Time (minutes) = Volume of Tank (gallons) Influent Flow (gpm)

Dilution Formula:
Volume of Solution 1 (gal) x \% of Solution 1 = Volume of Solution 2 (gal) x \% of Solution 2
Discharge $=$ Volume
Time
Dose, $\mathrm{mg} / \mathrm{L}=$ Feed Rate, lbs/day
(Flow, MGD) x ($8.34 \mathrm{lbs} / \mathrm{gal}$)

Dry Chemical, lbs. $=8.34 \times$ Volume (gallons) $\mathrm{x} \%$ Solution (as a decimal)

$$
\text { Efficiency, } \%=\frac{\text { In }- \text { Out }}{\text { In }} \times 100
$$

Feed Rate, lbs/day = (Flow, MGD) x (Dosage, mg/L) x (8.34 lbs/gal)
Feed Rate, gal/day = (Flow, MGD) x (Dosage, mg/L) x (8.34 lbs/gal)
(Active ingredient weight (lbs/gal)

Filter Backwash or Loading rate $=$ Flow (gpm)
Filter surface area (ft^{2})

Hardness $=(\underline{m L}$ of Titrant) $(1,000)$ (for 0.2 N EDTA) mL of Sample

Horsepower (hp):
Motor hp $=($ Flow, gpm) $($ Total Water Head, ft $)$ 3960

Brake hp = Motor hp pump efficiency

Ion Exchange Regeneration Brine (gal) = Salt dosage (lbs/ft3) x Volume of Resin (ft3) Brine solution active strength (lbs/gal)

Reduction in Flow, \% = (Original Flow - Reduced Flow) (100\%)
Original Flow
Surface Loading Rate $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)=$ Flow Rate, gpd Surface Area, ft^{2}

UV Absorbance (A) = Log (100\%/\%T) where T = I/I.
I = Intensity at sensor (milliwatts per square centimeter)
$\mathrm{I}_{0}=$ Intensity at source (milliwatts per square centimeter)
$\mathrm{T}=$ Transmittance
Velocity = Flow or Distance
Area Time
Weight of a liquid, lbs = gallons x Specific Gravity x $8.34 \mathrm{lbs} / \mathrm{gal}$
Weight of active ingredient, lbs = gallons x Specific Gravity x $8.34 \times \%$ solution (as a decimal)

WASTEWATER FORMULAS

Chlorine Demand (lbs/day) = Dose (lbs/day) - Residual (lbs/day)
Detention Time $=\frac{\text { Volume of Tank }}{\text { Influent Flow }}$
Efficiency, \% removal $=\frac{\text { In - Out }}{\text { In }} \times 100$
Food/Microorganism Ratio $=$ Influent BOD, lbs/day MLVSS, lbs

Horsepower (hp):

$$
\text { Motor } \mathrm{hp}=\frac{(\text { Flow, } \mathrm{gpm}) \mathrm{x}(\text { Total Water Head, ft })}{3960}
$$

Brake hp $=\underset{\text { pump efficiency }}{\text { Motor } \mathrm{hp}}$
Hydraulic Surface Loading Rate (gpd/ft ${ }^{2}$) = Flow Rate (gpd) Surface Area (ft^{2})

Load, lbs $=($ Concentration, mg/L) $\times($ Volume, mil. Gal $) \times 8.34$
Loading, lbs/day = (Concentration, mg/L) x (Flow, MGD) x 8.34
Mean Cell Residence Time (MCRT) =
(Suspended Solids in Aeration System, lbs)
(Suspended Solids Wasted, lbs/day + Suspended Solids Lost in Effluent, lbs/day)
Organic Loading Rate Trickling Filter $=$ Organic Load $(B O D), \mathrm{lbs} /$ day $\times 1,000 \mathrm{ft}^{3}$
Volume, ft^{3}
Oxygen Uptake = Oxygen Usage (mg/L) Time (min)

Pump rate $=$ Volume
Time
Slope $=$ Drop or Rise
Distance
Sludge Volume Index $=(\underline{\text { Settleable Solids, } \%) \times(10,000)}$
MLSS, mg/L

Solids Loading Trickling Filter, (lbs/day/ft ${ }^{2}$) = Solids Applied, lbs/day
Surface Area, ft^{2}

Solids, mg/L = (Dry Solids, grams) $\mathrm{x}(1,000,000)$

> ML of Sample

Surface Loading Rate $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)=$ Flow Rate, gpd Surface Area, ft^{2}

Velocity = Flow or Distance Area Time

Volatile Solids, \% = (Dry Solids - Ash Solids) x (100\%) Dry Solids

Weir Overflow Rate $=$ Flow (gpd)
Weir Length, (ft)
Weight of a liquid, $\mathrm{lbs}=$ gallons x Specific Gravity x 8.34

Conversion Factors:

1 acre $=43,560$ square feet	1 horsepower $=0.746$ kilowatts
1 cubic foot $=7.48$ Gallons	1 million gallons per day $=694$ gallons per minute
1 foot $=0.305$ meters	1 pound = 0.454 kilograms
1 gallon $=3.79$ liters	1 pound per square inch $=2.31$ feet of water
1 gallon $=8.34$ pounds	Degrees Celsius $=($ Degrees Fahrenheit -32$)(5 / 9)$
1 grain per gallon $=17.1 \mathrm{mg} / \mathrm{L}$	Degrees Farenheit $=($ Degrees Celsius x 1.8$)+32$
$1 \mathrm{mg} / \mathrm{L}=1 \mathrm{ppm}$	1 Ft of water column = 0.43 psi

Abbreviations:

BOD	Biochemical Oxygen Demand
ft	feet
gpd	gallons per day
gpg	grains per gallon
gpm	gallons per minute
lbs	pounds
mg/L	milligrams per Liter
MGD	million gallons per day
mL	milliliter
MLSS	mixed liquor suspended solids
MLVSS	mixed liquor volatile suspended solids
ppm	parts per million

UNITS OF WEIGHT

English	Metric		
pound -lb	gram -g milligram -mg kilogram -kg		
CONVERSIONS			
Metric/Metric	Metric/English		
$1000 \mathrm{mg}=1 \mathrm{~g}$ or $1000 \mathrm{mg} / \mathrm{g}$			
$1000 \mathrm{gm}=1 \mathrm{~kg}$ or $1000 \mathrm{~g} / \mathrm{kg}$		\quad	$1 \mathrm{lb}=454 \mathrm{~g}$ or $454 \mathrm{~g} / \mathrm{lb}$
:---:			

UNITS OF VOLUME		
English		Metric
```gallon - gal million gallon - Mga cubic feet - cu ft```		$\begin{gathered} \text { liter - L } \\ \text { milliliter - mL } \end{gathered}$
CONVERSIONS		
Metric/Metric	Metric/English	English/English
$\begin{gathered} 1000 \mathrm{~mL}=1 \text { liter or } 1000 \\ \mathrm{~mL} / \mathrm{L} \end{gathered}$	$\begin{gathered} 1 \mathrm{gal}=3.785 \mathrm{~L} \text { or } 3.785 \\ \mathrm{~L} / \mathrm{gal} \\ 1 \mathrm{gal}=3785 \mathrm{~mL} \text { or } 3785 \\ \mathrm{~mL} / \mathrm{gal} \end{gathered}$	$7.48 \mathrm{gal}=1 \mathrm{cu} \mathrm{ft}$ or 7.48 gal/cu ft

## UNITS OF TIME

day - day	minute - min
hour - hr	second - sec

## CONVERSIONS

1 day $=24 \mathrm{hr}$ or $24 \mathrm{hr} /$ day
$1 \mathrm{hr}=60 \mathrm{~min}$ or $60 \mathrm{~min} / \mathrm{hr}$
$1 \mathrm{~min}=60 \mathrm{sec}$ or $60 \mathrm{sec} / \mathrm{min}$
1 day $=1440 \mathrm{~min}$ or $1440 \mathrm{~min} /$ day

UNITS OF DENSITY		
English		Metric
$\mathrm{lbs} / \mathrm{gal}$	$\mathrm{kg} / \mathrm{L}$	
$\mathrm{lbs} / \mathrm{cu} \mathrm{ft}$		$\mathrm{g} / \mathrm{mL}$
English	THE DENSITY OF WATER	
$8.34 \mathrm{lbs} / \mathrm{gal}$		Metric/Metric
$62.4 \mathrm{lbs} / \mathrm{cu} \mathrm{ft}$		$1 \mathrm{~kg} / \mathrm{L}$

## UNITS OF CONCENTRATION

| English |  | Metric |
| :---: | :---: | :---: | :---: |
| $\mathrm{lbs} / \mathrm{gal}$ | $\mathrm{mg} / \mathrm{L}$ |  |
| CONVERSIONS |  |  |
| $1 \mathrm{lb} / \mathrm{gal}=120,000 \mathrm{mg} / \mathrm{L}$ |  |  |


UNITS OF FLOW	
English	Metric
```gallons per minute - gal/min - GPM gallons per day - gal/day - GPD million gallons per day - Mgal/day - MGD cubic feet per second - cu ft/sec - CFS```	milliliters per minute - mL/min
CONVERSIONS	
English/English	English/Metric
1 MGD $=694$ GPM or 694 GPM/MGD 1 MGD $=1.55$ CFS or 1.55 CFS/MGD	$1 \mathrm{gal} /$ day $=2.63 \mathrm{~mL} / \mathrm{min}$

Davidson Pie

