


# Commonwealth of Pennsylvania State Board for Certification of Water and Wastewater Systems Operators

3/2016

# Formulas, Conversions, and Common Scientific Units



Formulas, Conversions & Abbreviations





Units of Weight, Volume, Time, Density, Concentration & Flow

### **Formulas & Conversions**

## **Formulas**

#### **AREA**

Area of Rectangle =  $(Length) \times (Width)$ 

Area of Triangle =  $\frac{1}{2}$  x (Base) x (Height)

Area of Circle = (0.785) x (Diameter<sup>2</sup>) or (3.14) x (Radius<sup>2</sup>)

Area of Cylinder Surface =  $[(0.785) \times (Diameter^2)] + [(3.14) \times (Diameter) \times (Height)]$ 

Circumference of Circle = (3.14) x (Diameter) or (2) x (3.14) x (Radius)

Curved Surface Area of a Cylinder =  $(2) \times (3.14) \times (Radius) \times (Height)$ 

End Surface Areas of a Cylinder (both ends) =  $(2) \times (3.14) \times (Radius^2)$ 

#### **VOLUME**

Volume of Rectangular Tank ( $ft^3$ ) = (Length) x (Width) x (Height)

Volume of Cone ( $ft^3$ ) = (.333) x (0.785) x (Diameter<sup>2</sup>) x (Height)

Volume of Cylinder ( $ft^3$ ) = (0.785) x (Diameter<sup>2</sup>) x (Height) or (3.14) x (Radius<sup>2</sup>) x (Height)

Volume of a Treatment Vessel, gal = Volume (ft<sup>3</sup>) x (7.48 gal/ft<sup>3</sup>)

#### WATER FORMULAS

Alkalinity = (mL of Titrant) (Acid Normality) (50,000) mL of Sample

Chlorine Demand (mg/L) = Chlorine dose – chlorine residual

CT = Concentration of disinfectant residual X contact time (mins)

Detention Time (minutes) =  $\frac{\text{Volume of Tank (gallons)}}{\text{Influent Flow (gpm)}}$ 

Dilution Formula:

Volume of Solution 1 (gal) x % of Solution 1 = Volume of Solution 2 (gal) x % of Solution 2

 $\begin{array}{c} \text{Discharge} \ = \ \underline{\text{Volume}} \\ \text{Time} \end{array}$ 

Dose,  $mg/L = \frac{Feed Rate, lbs/day}{(Flow, MGD) x (8.34 lbs/gal)}$ 

Dry Chemical, lbs. = 8.34 x Volume (gallons) x % Solution (as a decimal)

Efficiency,  $\% = \frac{\text{In} - \text{Out}}{\text{In}} \times 100$ 

Feed Rate,  $lbs/day = (Flow, MGD) \times (Dosage, mg/L) \times (8.34 lbs/gal)$ 

Feed Rate, gal/day =  $(Flow, MGD) \times (Dosage, mg/L) \times (8.34 lbs/gal)$ (Active ingredient weight (lbs/gal)

Filter Backwash or Loading rate =  $\frac{\text{Flow (gpm)}}{\text{Filter surface area (ft}^2)}$ 

Hardness = (mL of Titrant) (1,000) (for 0.2 N EDTA) mL of Sample

Horsepower (hp):

Motor hp = (Flow, gpm) (Total Water Head, ft)3960

Brake  $hp = \underline{Motor hp}$  pump efficiency

Ion Exchange Regeneration Brine (gal) = Salt dosage (lbs/ft3) x Volume of Resin (ft3)

Brine solution active strength (lbs/gal)

Reduction in Flow, % = (Original Flow - Reduced Flow) (100%)Original Flow

Surface Loading Rate (gpd/ft<sup>2</sup>) = Flow Rate, gpd Surface Area, ft<sup>2</sup>

UV Absorbance (A) = Log (100%/%T) where T =  $I/I_o$ 

I = Intensity at sensor (milliwatts per square centimeter)

 $I_0$  = Intensity at source (milliwatts per square centimeter)

T = Transmittance

 $Velocity = \frac{Flow}{Area} \text{ or } \frac{Distance}{Time}$ 

Weight of a liquid, lbs = gallons x Specific Gravity x 8.34 lbs/gal

Weight of active ingredient, lbs = gallons x Specific Gravity x 8.34 x % solution (as a decimal)

#### **WASTEWATER FORMULAS**

```
Chlorine Demand (lbs/day) = Dose (lbs/day) - Residual (lbs/day)
Detention Time = Volume of Tank
                    Influent Flow
Efficiency, % removal = In - Out \times 100
Food/Microorganism Ratio = Influent BOD, lbs/day
                                  MLVSS, lbs
Horsepower (hp):
        Motor hp = (Flow, gpm) \times (Total Water Head, ft)
                                  3960
        Brake hp =
                      Motor hp
                     pump efficiency
Hydraulic Surface Loading Rate (gpd/ft^2) = Flow Rate (gpd)
                                            Surface Area (ft<sup>2</sup>)
Load, lbs = (Concentration, mg/L) \times (Volume, mil. Gal) \times 8.34
Loading, lbs/day = (Concentration, mg/L) x (Flow, MGD) x 8.34
Mean Cell Residence Time (MCRT) =
                         (Suspended Solids in Aeration System, lbs)
           (Suspended Solids Wasted, lbs/day + Suspended Solids Lost in Effluent, lbs/day)
Organic Loading Rate Trickling Filter = Organic Load (BOD), lbs/day x 1,000ft<sup>3</sup>
                                                           Volume, ft<sup>3</sup>
Oxygen Uptake = Oxygen Usage (mg/L)
                         Time (min)
Pump rate = \frac{\text{Volume}}{\text{Volume}}
                Time
Slope = \underline{Drop \ or \ Rise}
            Distance
Sludge Volume Index = (Settleable Solids, %) x (10,000)
                                    MLSS, mg/L
Solids Loading Trickling Filter, (lbs/day/ft²) = Solids Applied, lbs/day
```

Surface Area, ft<sup>2</sup>

Solids, mg/L = ( $\underline{Dry \ Solids, \ grams}$ ) x (1,000,000) ML of Sample

Surface Loading Rate  $(gpd/ft^2) = \frac{Flow Rate, gpd}{Surface Area, ft^2}$ 

 $Velocity = \frac{Flow}{Area} \text{ or } \frac{Distance}{Time}$ 

Volatile Solids,  $\% = (\underline{Dry \ Solids - Ash \ Solids}) \ x \ (100\%)$  $Dry \ Solids$ 

Weir Overflow Rate = Flow (gpd) Weir Length, (ft)

Weight of a liquid,  $lbs = gallons \times Specific Gravity \times 8.34$ 

# **Conversion Factors:**

| 1 acre = 43,560 square feet   | 1 horsepower = 0.746 kilowatts                     |
|-------------------------------|----------------------------------------------------|
| 1 cubic foot = 7.48 Gallons   | 1 million gallons per day = 694 gallons per minute |
| 1  foot  = 0.305  meters      | 1 pound = 0.454 kilograms                          |
| 1 gallon = 3.79 liters        | 1 pound per square inch = 2.31 feet of water       |
| 1 gallon = 8.34 pounds        | Degrees Celsius = (Degrees Fahrenheit – 32) (5/9)  |
| 1 grain per gallon = 17.1mg/L | Degrees Farenheit = (Degrees Celsius x 1.8) + 32   |
| 1  mg/L = 1  ppm              | 1 Ft of water column = 0.43 psi                    |

# Abbreviations:

BOD Biochemical Oxygen Demand

ft feet

gpd gallons per day gpg grains per gallon gpm gallons per minute

lbs pounds

mg/L milligrams per Liter
MGD million gallons per day

mL milliliter

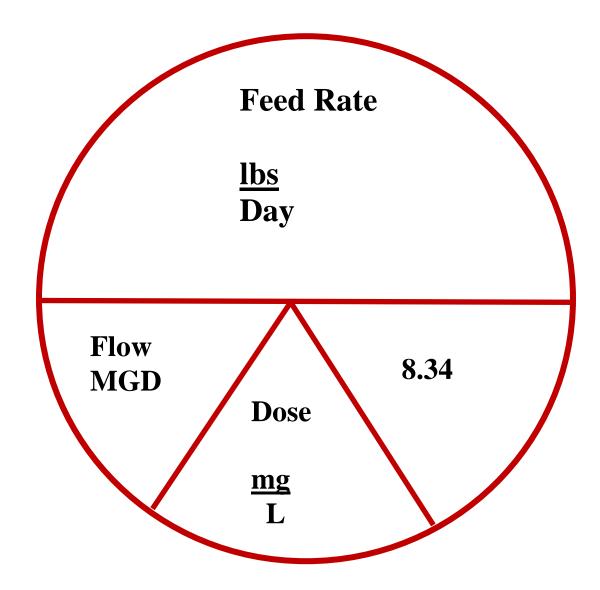
MLSS mixed liquor suspended solids

MLVSS mixed liquor volatile suspended solids

ppm parts per million

| UNITS OF WEIGHT                                           |                                                          |  |  |
|-----------------------------------------------------------|----------------------------------------------------------|--|--|
| English                                                   | Metric                                                   |  |  |
| pound - lb                                                | gram - g<br>milligram - mg<br>kilogram - kg              |  |  |
| CONVERSIONS                                               |                                                          |  |  |
| Metric/Metric                                             | Metric/English                                           |  |  |
| 1000 mg = 1 g or 1000 mg/g<br>1000 gm = 1 kg or 1000 g/kg | 1 lb = 454 g or 454 g/lb<br>1 kg = 2.2 lbs or 2.2 lbs/kg |  |  |

| UNITS OF VOLUME                                             |                                                                        |                              |                                         |
|-------------------------------------------------------------|------------------------------------------------------------------------|------------------------------|-----------------------------------------|
| English                                                     |                                                                        | Metric                       |                                         |
| gallon - gal<br>million gallon - Mgal<br>cubic feet - cu ft |                                                                        | liter - L<br>milliliter - mL |                                         |
| CONVERSIONS                                                 |                                                                        |                              |                                         |
| Metric/Metric                                               | Metric/English                                                         |                              | English/English                         |
| 1000 mL = 1 liter or 1000<br>mL/L                           | 1 gal = 3.785 L or 3.785<br>L/gal<br>1 gal = 3785 mL or 3785<br>mL/gal |                              | 7.48 gal = 1 cu ft or 7.48<br>gal/cu ft |


| UNITS OF TIME              |                                  |  |  |
|----------------------------|----------------------------------|--|--|
| day - day minute - min     |                                  |  |  |
| hour - hr                  | second - sec                     |  |  |
| CONVERSIONS                |                                  |  |  |
| 1 day = 24 hr or 24 hr/day | 1 min = 60 sec or 60 sec/min     |  |  |
| 1 hr = 60 min or 60 min/hr | 1 day = 1440 min or 1440 min/day |  |  |

| UNITS OF DENSITY     |               |  |  |
|----------------------|---------------|--|--|
| English              | Metric        |  |  |
| lbs/gal              | kg/L          |  |  |
| lbs/cu ft            | g/mL          |  |  |
| THE DENSITY OF WATER |               |  |  |
| English              | Metric/Metric |  |  |
| 8.34 lbs/gal         | 1 kg/L        |  |  |
| 62.4 lbs/cu ft       | 1 g/mL        |  |  |

| UNITS OF CONCENTRATION  |        |  |  |
|-------------------------|--------|--|--|
| English                 | Metric |  |  |
| lbs/gal                 | mg/L   |  |  |
| CONVERSIONS             |        |  |  |
| 1 lb/gal = 120,000 mg/L |        |  |  |

| UNITS OF FLOW                                                                                                                                                |                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| English                                                                                                                                                      | Metric                          |  |
| gallons per minute - gal/min - GPM<br>gallons per day - gal/day - GPD<br>million gallons per day - Mgal/day - MGD<br>cubic feet per second - cu ft/sec - CFS | milliliters per minute - mL/min |  |
| CONVERSIONS                                                                                                                                                  |                                 |  |
| English/English                                                                                                                                              | English/Metric                  |  |
| 1 MGD = 694 GPM or 694 GPM/MGD<br>1 MGD = 1.55 CFS or 1.55 CFS/MGD                                                                                           | 1 gal/day = 2.63 mL/min         |  |

# Davidson Pie

